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The probability density function and the first three statistical moments of the 
velocity, acceleration and dynamic pressure are obtained for a Gaussian, 
stationary, homogeneous, random gravity-wave field in deep water, using 
infinitesimal wave solutions. It is shown that the velocity, acceleration and 
pressure are non-Gaussian. While the horizontal accelerations and vertical 
velocity component are of zero mean and unskewed, the dynamic pressure, 
vertical acceleration and horizontal velocity components are skewed and have 
non-zero mean. 

1. Introduction 
Fluid motion in a random wave field has been of interest to oceanographers and 

engineers for many years. This is particularly true for coastal engineers, who are 
concerned with the forces on marine structures and ocean installations and the 
prediction of sediment transport and waste out-fall movements. 

I n  this paper, a number ofthe statistical properties of a random wave field that 
have not hitherto been available in the literature are derived. Specifically, they 
are the probability density function and the first three statistical moments of the 
velocity, acceleration and dynamic pressure. The deep-water gravity waves con- 
sidered are assumed to be Gaussian, of zero mean, stationary in time and homo- 
geneous in space. Using infinitesimal wave solutions it is shown that, to first 
order, the velocity, acceleration and dynamic pressure are non-Gaussian. While 
the horizontal accelerations and vertical velocity component are of zero mean and 
unskewed, the vertical acceleration, horizontal velocity components and dynamic 
pressure are skewed and have non-zero mean. 

2. Specification of random sea 
Consider a rectangular co-ordinate system with the z axis vertically upwards 

and origin in the equilibrium surface. Let the free-surface elevation z = <(x, t ) ,  
assumed to be of zero mean and Gaussian, be represented by 

[(x, t )  = IkdB(k)  exp [i(k . x - nt)], (1) 

where x is the horizontal position vector, t is time, dB(k) is a complex random 
function of the wavenumber vector k and n is the frequency. Under the 
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assumption of an inviscid, incompressible and irrotational fluid, the associated 
velocity potential Q(x, z ,  t), in deep water, is given to first order by 

o(x, z ,  t) = - ijkk dB(k) elklzexp [i(k . x -nt)] 

with the frequency TL = (glkl);. ( 2 )  

Denoting the unit vector j~arallel to the z axis by e3, the velocity is 

n 
u(x,z,t) = V#(x,z,t)  = --i (ik-Ik/ e3)-dB(k)elk’zexp[i(k.x-nt)] (3) f Ikl 

and the acceleration is, to first order, 

au(x’z’t) = -g (ik- Ikl e,)dB(k)e’kl”exp[i(k.x-nt)] (4) a(x, z ,  t )  = 
at /k 

everywhere below the free surface. Stated explicitly, 

and 

(5) 

(6) 

where H (  ) is the Heaviside unit function. Similarly, the dynamic pressure is, to 
first order, 

F ( X ,  z, t) = P(X, 2, t) H(C(x, t) - 4, (7)  

where p(x, z ,  t )  = -p  -- = dB(k) elklzexp [i(k . x - nt)], a’(x’ at ” t, 
p being the water density. 

It is immediately clear from (3) and ( 5 )  that, while u(x,x,~) is Gaussian, 
O(x, z ,  t ) ,  being a nonlinear function of the Gaussian processes u(x, z ,  t )  and 
<(x, t ) ,  is non-Gaussian. The same observation may also be made for B(x, z ,  t )  and 
F(X, z ,  0. 

3. Statistical properties of velocity 

are 

by the theorem of total probability. In  (9), P( ) denotes the probability of the 
event in the parentheses while f ( ) is the conditional probability density 
function. 

The probability density functions of the velocity components (GI, Gz, Us) of ii 

19) fZ,(Uj) = f i i , g < , ( q m  Q 2) + f q [ > A G j )  RC > 21, j = 1 > 2 ,  3, 

Since < is Gaussian, the probability that < 6 z is 

P(< < 2) = 1 - & ( z / q ) ,  

where 

and from (1) = [Ik@(k)dkIi 

is the standard deviation of the surface elevation, whose wavenumber spectrum 
is @(k). 
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The conditional probability density function of Uj, given c < 2, is 
f E p z ( U j )  = W j ) ,  j = 132, 3, 

6( ) being the Dirac delta function. By the definition of conditional probabiIity 
and ( 5 ) ,  

fEjlp.('i"i) = jrnfUiC(L u. c ) d < / a  > Z), j = 1,273, 

ft&ii, <) being the joint Gaussian probability density function of ui and 5. 
After performing the integration and-substituting into (9), 

where the standard deviations of the ui are 

from (3), and the correlation coefficients of the uj and < are 

from (1)  and (3). In  the above equations ki is thejth component of k. From (lo), 
it may be seen that, far below the equilibrium surface, the first term on the right- 
hand side becomes vanishingly small and the second term approaches a Gaussian 
form. 

The first three statistical moments of Uj, j = 1,2,3,  can be obtained from (10) 
through the definition of statistical moments. They are 

and 

where E [  ] denotes the expect'ed value of the argument. 
It is not,ed that, since r3 = 0, E, is of zero mean and unskewed though non- 

Gaussian. However, U, and U 2  have non-zero first-order means and are skewed 
except when IzI is large, while for each velocity component E[U3 approaches ff:j 
with increasing depth. From (15), it  may be noted that the mean kinetic energy 
per unit mass associated with the point under consideration is not equally divided 
between the horizontal and vertical motions since the point does not always 
remain below the water surface, as was observed by Phillips (1961). 

The statistical moments of the U j  may also be derived directly without resort 
t o  explicit expressions for their probability density functions. That is, from ( 5 ) ,  

E[Zj] = E[UjH(<--2)] = E[H([-2)E[ujlc]] 
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(Parzen 1964), where E[ I ] denotes ‘conditional expectation’. The quantities ui 
and 5, being jointly Gaussian, yield 

EWjl c1 = 0 . j  a;jlq, 

(3 0;t. 

gc 
giving 

as is shown in (14). 

E[Gi] = rj-’E[@f(Y-z)] = riuujZ - 

For the second statistical moment 

E [ q ]  = E[upY(5-z)] = E[H(c-z)E[Uj2([]]. 

E [ q ]  = E[H(C- z ) ]  GZ,( 1 - Y;) + E[52H(C- z ) ]  Ti” F q c r ; .  

But E[u31<] = ~ ~ j ( l - r ~ ) + r ~ g ~ ~ ~ ~ 2 C 2 ,  

Thus 

Noting that E[H(5 - z)l = Q(z/gc)  

and E[C’H(5--2)] = 0-f 

( 15) is recovered. . .  
The quantity E[Z3 in (16) may be arrived at in much the same manner as 

E[iii] and E[?$], and is therefore not rederived here. 

4. Statistical properties of acceleration and pressure 
Examination of (5)-(  7) suggests that the probability density fuiictions and 

statistical moments of 5(x, x ,  t )  and p(x, z ,  t )  are of the same form as those of 
ii(x,z,t) as given by (10) and (14)-(16). 

by 
the standard deviation of ai: 

Thus, for Ej(x, x ,  t ) ,  zCi in (10) and (14)-( 16) is to be replaced by Zj, and 

Also, 

The horizontal components of the acceleration are, therefore, of zero mean and 

Similarly, for the dynamic pressure $(x) z ,  t ) ,  p is to be used in place of T i j  in 
unskewed. 

(10) and (14)-( 16), and ou, should be replaced by 

ap = pg [ Ik @(k) a21klzdk]’. 

In  t,hose equations ri is now 
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It should be mentioned here that at z = 0 r = 1, in which case the probability 
density function is 

fc(p) = @ ( p )  +-2 - H(j5) 
a P  (Z. 

while the statistical moments still retain the forms (14)-(16). 
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